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Abstract Hidden Markov Processes (HMP) is one of the basic tools of the modern proba-
bilistic modeling. The characterization of their entropy remains however an open problem.
Here the entropy of HMP is calculated via the cycle expansion of the zeta-function, a method
adopted from the theory of dynamical systems. For a class of HMP this method produces
exact results both for the entropy and the moment-generating function. The latter allows to
estimate, via the Chernoff bound, the probabilities of large deviations for the HMP. More
generally, the method offers a representation of the moment-generating function and of the
entropy via convergent series.
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1 Introduction

Hidden Markov Processes (HMP) are generated by a Markov process observed via a
memory-less noisy channel. They are widely employed in various areas of probabilistic
modeling [1–5]: information theory, signal processing, bioinformatics, mathematical eco-
nomics, linguistics, etc. One of the main reasons for these numerous applications is that
HMP present simple and flexible models for a history-dependent random process. This is in
contrast to the Markov process, where the history is irrelevant, since the future of the process
depends on its present state only.

Much attention was devoted to the entropy of HMP [6–18]. It characterizes the informa-
tion content (minimal number of bits needed for a reliable encoding) of HMP viewed as a
probabilistic source of information. More specifically, the realizations generated in the long
run of a random ergodic process, e.g. HMP, are divided into two sets [7, 9]. The first (typi-
cal) set is the smallest set of realizations with the overall probability close to one. The rest
of realizations are contained in the second, low-probability set. Now the entropy character-
izes the number of elements in the typical set [7, 9]. When HMP is employed as a model
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for information transmission over a noisy channel, the entropy is still important, since it
is the basic non-trivial component of the channel capacity (other components needed for
reconstructing the channel capacity are normally easier to calculate and characterize).

However, there is no direct formula for the entropy of HMP, in contrast to the Markov
case where such a formula is well-known [6, 7, 9]. Thus people studied the entropy via
expansions around various limiting cases, or via upper and lower bounds [7, 11–18]. There
is also a general formalism that expresses the entropy of HMP via the solution of an integral
equation [8–10]. This formalism is however relatively difficult to apply in practice.

Once the entropy characterizes the number of typical long-run realizations, it is of interest
to estimate the probability of atypical realizations. These estimates are standardly given
via the moment-generating function of the random process [7, 9]. The knowledge of this
function also allows to reconstruct the entropy [7, 9].

This paper presents a method for calculating the moment-generating function of HMP.
The method is adopted from the theory of chaotic dynamical systems, where it is known
as the cycle expansion of the zeta-function [26, 27, 29]. We show that in a certain class of
HMP one can obtain exact expressions for the moment-generating function and for the en-
tropy. For other cases the method offers analytic approximations of the moment-generating
function via convergent power series.

We attempted to make this paper self-contained and organized it as follows. Section 2 de-
fines the HMP, settles some notations, and recalls how to express the probabilities of HMP
via a random matrix product. In Sect. 3 we briefly review the main facts about the entropy of
an ergodic process and the corresponding typical (highly probable) set of realizations. The
main purpose of Sect. 4 is to relate the entropy of HMP to the spectral radius of the cor-
responding random matrix product. This is done via the Lyapunov exponent of the random
matrix product. Section 5 discusses the moment-generating function of HMP. This function
is employed (via Chernoff bounds) for characterizing the atypical (improbable) realizations
of HMP. Section 6 shows how to calculate the entropy and the generating function via the
zeta-function and the periodic orbit expansion. Section 7 discusses one of the simplest ex-
amples of HMP and presents exact expressions for its entropy and the moment-generating
function. Here we also apply the moment-generating function for estimating atypical real-
izations of the HMP. Section 8 studies another popular model for HMP, binary symmetric
HMP. It is shown that the presented approach reproduces known approximate results and
predicts several new ones. The last section shortly summarizes the obtained results. Some
issues, which are either too technical or too general for the present purposes, are discussed
in Appendices 1–5.

2 Definition of the Hidden Markov Process

In this section we recall the definition of the Hidden Markov Process (HMP); see [1, 2] for
reviews.

Let a discrete-time random process S = {S0, S1, S2, . . .} be Markovian, with time-
independent conditional probability

Pr[Sk = sk|Sk−1 = sk−1] = Pr[Sk+l = sk|Sk−1+l = sk−1] = p(sk|sk−1), (1)

where l is an integer. Each realization s of the random variable S takes values s = 1, . . . ,L.
The joint probability of the Markov process reads

Pr[SN = sN , . . . , S0 = s0] = p(sN |sN−1) . . . p(s1|s0)p(s0) =
1∏

k=N

p(sk|sk−1)p(s0), (2)
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where p(s0) is the initial probability. The conditional probabilities p(sk|sk−1) define the
L × L transition matrix P:

Psksk−1 = p(sk|sk−1). (3)

We assume that the Markov process S is mixing [19]: it has a unique stationary distribu-
tion pst(s),

L∑

s′=1

p(s|s ′)pst(s
′) = pst(s), (4)

that is established from any initial probability in the long time limit. The transition matrix
P has always one eigenvalue equal to 1 [since P has a left eigenvector (1, . . . ,1)], and the
modules [absolute values] of all other eigenvalues are not larger than one.1 The mixing
feature however demands that the eigenvalue equal to 1 is non-degenerate and the modules
of all other eigenvalues are smaller than 1 [19]. A sufficient condition for mixing is that
all the conditional probabilities p(si+1|si) of the Markov process are positive [19].2 Taking
p(s) = pst(s) in (2) makes the process S stationary.

Let random variables Xi , with realizations xi = 1, ..,M , be noisy observations of Si : the
(time-invariant) conditional probability of observing Xi = xi given the realization Si = si of
the Markov process is π(xk|sk). The joint probability of the original process and its noisy
observations reads

P (sN, . . . , s0;xN, . . . , x1) =
1∏

k=N

π(xk|sk)p(sk|sk−1)pst(s0) (5)

= TsN sN−1(xN) · · ·Ts1s0(x1)pst(s0), (6)

where the L × L transfer-matrix T (x) with matrix elements Tsi si−1(x) is defined as

Tsi si−1(x) = π(x|si)p(si |si−1). (7)

Thus X = {X1, X2, . . .}, called hidden Markov process, results from observing the
Markov process S through a memory-less process with the conditional probability π(x|s).
The composite process S X is Markovian as well.

The probabilities for the process X are represented via the transfer matrix product (sim-
ilar representation were employed in [12, 13])

P (xN...1) = 〈un|T(xN...1)|st〉, (8)

T(xN...1) ≡
1∏

k=N

T (xk), (9)

xN...1 ≡ (xN , . . . , x1), (10)

1Indeed,
∑

k Pikxk = νxi implies |∑k Pikxk | ≤ ∑
k Pik |xk | = |ν||xi |, which then leads to |ν| ≤ 1.

2Weaker sufficient conditions for mixing are that (i) for any (i, j) there exists a positive integer mij such that
(P

mij )ij > 0, i.e., for some power of the matrix its entries are positive, and (ii) P has at least one positive
diagonal element [19]. If we do assume the first condition, but do not assume the second one, the eigenvalue 1
of P is [algebraically and thus geometrically] non-degenerate, and is not smaller than the absolute values of all
other eigenvalues [19]. The corresponding [unique] eigenvector has strictly positive components. However, it
may be that the module of some other eigenvalue(s) is equal to 1 thus preventing the proper mixing, but still
allowing for ergodicity due to condition (i).
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where we used the bra(c)ket notations: |st〉 is the column vector with elements pst(k), k =
1, . . . ,L, and 〈un| = (1, . . . ,1).

The HMP defined by (8) is (in general) not a Markov process, i.e., its probabilities do
not factorize as in (2). Thus the history of the process can become relevant. This is the
underlying reason for widespread applications of HMP.

The process X is stationary due to the stationarity of S :

Pr[XN+l = xN, . . . , Xl+1 = x1] = Pr[XN = xN, . . . , X1 = x1] = P (xN, . . . , x1), (11)

where l is a positive integer.
In addition, X inherits the mixing feature from the underlying Markov process S [2],

because the observation process by itself is memoryless: π(xk|sk) = π(xk|sk, sk−1, . . . , s0).
(The general definitions of ergodicity and mixing are reminded below.)

2.1 Notations for the Eigenvalues and Singular Values

For future purposes we concretise some notations. For a matrix A, let l0[A], l1[A], . . . be the
modules of its eigenvalues. We order lk[A] as

λ[A] ≡ l0[A] ≥ l1[A] ≥ · · · , (12)

λ[A] is called the spectral radius of A [19]. If A has non-negative matrix elements, the
spectral radius is an eigenvalue by itself [19]. Here are two obvious features of the function
λ (d is a positive integer):

λ[Ad ] = (λ[A])d , (13)

λ[AB] = λ[BA], (14)

where (14) follows from the fact that AB and BA have identical eigenvalues: AB|ψ〉 = ν|ψ〉
implies BA(B|ψ〉) = νB|ψ〉.

Let A† be the complex conjugate of A. The singular values σk[A] ≥ 0 for a matrix A are
the eigenvalues of a Hermitean matrix

√
AA† or, equivalently, of

√
A†A; see Appendix 1

for a brief reminder on the features of the singular values. We order σk[A] as

σ0[A] ≥ σ1[A] ≥ · · · . (15)

3 Entropy and Typical Set of Ergodic Processes

The N -block entropy of a stationary [not necessarily Hidden Markov] random process X is
defined as [6, 7, 9]

H(N) = H(X1, . . . , XN) ≡ −
∑

xN...1

P (xN...1) lnP (xN...1), (16)

where the probability P (xN...1) is given as in (8), and where xN...1 is defined in (10). Various
features of H(N) and of several related quantities are discussed in Appendix 2.

Using (16) one now defines the entropy (rate) of the random process X as [6, 7, 9]

h = lim
N→∞

H(N)

N
. (17)
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Alternative representations of h are recalled in Appendix 2. In particular, h is the uncertainty
[per unit of time] of the random process given its long history.

For ergodic processes the above definition of entropy can be related to a single, long
sequence of realizations [6, 7, 9]. First of all let us recall that the process X is ergodic if it
satisfies to the weak law of large numbers (time average is equal to the space average): for
any function f with a finite expectation value f̄ ≡ ∑

xk,...,x0
f [xk, . . . , x0]P (xk, . . . , x0), we

have probability-one convergence for N → ∞ [6, 7, 9]:

1

N

N−1∑

n=0

f [Xn+k, . . . , Xn] → f̄ , (18)

i.e., for any positive numbers ε and δ, there is such an integer N (ε, δ) that for all N >

N (ε, δ),

Pr

[∣∣∣∣
1

N

N−1∑

n=0

f [Xn+k, . . . , Xn] − f̄

∣∣∣∣ ≥ ε

]
≤ δ. (19)

Several alternative definitions of ergodicity are discussed in [36].3

Now the McMillan lemma states that for an ergodic process the entropy (17) character-
izes individual realizations in the sense of probability-one convergence for N → ∞ [6, 7,
9]:4

− 1

N
lnP (xN...1) → h or Pr

[∣∣∣∣−
1

N
lnP (xN...1) − h

∣∣∣∣ ≤ ε

]
≥ 1 − δ. (20)

Based on (20) one defines the typical set 	∗
N(ε) as the set of all xN...1, which satisfy to

h − ε ≤ − 1

N
lnP (xN...1) ≤ h + ε. (21)

Now (20) implies that Pr[xN...1 ∈ 	∗
N(ε)] ≥ 1 − δ, i.e., the overall probability of 	∗

N(ε)

converges to one in the limit N → ∞. Since all elements in 	∗
N(ε) have approximately

equal probabilities, the number of elements |	∗
N(ε)| in 	∗

N(ε) scales as eNh. More precisely,
this number is estimated from (20, 21) as [6]

(1 − δ)eN(h−ε) ≤ |	∗
N(ε)| ≤ eN(h+ε). (22)

Relations similar to (21) will be frequently written as

P (xN...1)  e−Nh for xN...1 ∈ 	∗
N , (23)

3One such definition is worth mentioning: X is ergodic if for any k, m and s: limN→∞ 1
N

∑N−1
n=0 Pr[Xn+k =

xk, . . . , Xn = x0, Xm+s = ym, . . . , Xs = y0] = P(xk, . . . , x0)P (ym, . . . , y0). This definition admits a
straightforward and important generalization. X is called mixing if the above relation holds without the
time-averaging 1

N

∑N−1
n=0 , but in the limit n → ∞.

4The McMillan lemma contains two essential steps [6]. First is to realize that although the definition (18)

of ergodicity does not apply directly to 1
N

lnP(xN...1), it does apply to the probability Qm(xN...1) =
P(x1, . . . , xm)

∏N−m
i=1 P(xm+i |xm+i−1, . . . , xi ), which defines an approximation of the original ergodic

process by a m-order Markov process. In the second step using a chain of inequalities Pr[|lnx| ≥ nε] ≤
1
nε |lnx| ≤ 1

nε (2x − lnx), one proves that for any stationary [not necessarily ergodic] process Qm(xN...1) is

indeed a good approximation in the sense of 1
N

ln Qm(xN...1)
P (xN...1)

 0 for N � m → ∞.
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meaning that the precise sense of the asymptotic relation  for N → ∞ can be clarified
upon introducing proper ε and δ.

4 Lyapunov Exponents and Entropy

The purpose of this section is to establish relation (29) between the entropy of a Hidden
Markov Process, and the spectral radius of the associated random matrix product (8). The
reader may skip this section, if this relation is taken granted.

4.1 Singular Values of the Random-Matrix Product

The actual calculation of the entropy h for non-Markov processes meets (in general) con-
siderable difficulties. (For Markov processes definition (17) applies directly leading to the
well-known formula for the entropy [6].) The first step in calculating the entropy h for a
Hidden Markov Process (HMP) is to relate h to the large-N behaviour of the L × L matrix
T(xN...1), which defines the probability of HMP; see (8, 9). Recall that T(xN...1) is a func-
tion of the random process X . Assume that (i) X is stationary, as is the case after (11). (ii)
The average logarithm of the maximal singular value of T (x) is finite: 〈lnσ0[T (x)]〉 < ∞.
(iii) X is ergodic. Then the subadditive ergodic theorem applies claiming for N → ∞ the
probability-one convergence [20, 21]:

− 1

N
lnσk[T(xN...1)] → μk, k = 0, . . . ,L − 1, (24)

where σk[T(xN...1)] are the singular values of T(xN...1) (see Sect. 2.1 for notations), and
where μk are called Lyapunov exponents. According to (15) they are ordered as μ0 ≤
μ1 ≤ · · ·.

Using the definition (21) of the typical set, (24) can be written as an asymptotic relation
σk[T(xN...1)]  e−Nμk for xN...1 ∈ 	N and sufficiently large N [22]. Moreover, employing
the singular value decomposition [see Appendix 1], one represents T(xN...1) for N → ∞
and xN...1 ∈ 	∗

N as

T(xN...1)  diag
[
e−Nμ0 , . . . , e−NμL−1

]
U(x), (25)

where diag[a, . . . , b] is a diagonal matrix with entries a, . . . , b, and where U(x) is an or-
thogonal matrix. The fact that (for N → ∞) the matrix U does not depend on N (but does
in general depend on the realization x) is a consequence of the Oseledec theorem [22, 23].

Thus the meaning of (25) is that the essential dependence of T(xN...1) on N is contained
in the singular values e−Nμk , while U(x) does not depend on N for N → ∞.

4.2 Eigenvalues of the Random-Matrix Product

The above reasoning by itself is silent about the eigenvalues of T(xN...1). Since the ma-
trix T(xN...1) is in general not normal, i.e., the commutator of T(xN...1) with its transpose
T

†(xN...1) is not zero, the modules lk[T(xN...1)] of its eigenvalues are not automatically equal
to its singular values e−Nμk ; see Appendix 1. For us the knowledge of the spectral radius
λ[T(xN...1)] will be important, because for calculating the entropy we shall employ a method
that essentially relies on the features (13, 14), which hold for the eigenvalues, but do not hold
for singular values.
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It is shown in Appendix 4 that the representation (25) can be used for deducing that in
the limit N → ∞ and for xN...1 ∈ 	∗

N the spectral radius λ[T(xN...1)] of T(xN...1) behaves as
[recall (12)]

λ[T(xN...1)]  e−Nμ0 , (26)

where μ0 is the so called top Lyapunov exponent. Appendix 4 discusses under which generic
conditions (26) holds; see also [24] in this context.

Using (8) we have asymptotically for N → ∞ and xN...1 ∈ 	∗
N

T(xN...1)  e−Nμ0 |R(x)〉〈L(x)| + O[e−Nν1(xN...1)], (27)

P (xN...1)  e−Nμ0+O(1) + O[e−Nν1(xN...1)], (28)

where we denoted l1[T(xN...1)] ≡ e−Nν1(xN...1) [see (12)], and where |R(x)〉 and |L(x)〉 are,
respectively, the right and left eigenvectors of T(xN...1); see Appendix 1. They do not depend
on N (for N → ∞) for the same reason as U in (25) does not depend on N . In writing
down (27) we assumed that the spectral radius λ[T(xN...1)] is not a degenerate eigenvalue of
T(xN...1), or at least that its algebraic and geometric degeneracies coincide (see Appendix 1).
In that latter case one can then use (27) with straightforward modifications and obtain (28).

The term O[e−Nν1(xN...1)] in (27, 28) can be neglected for N → ∞ provided that μ0 >

ν1(xN...1 ∈ 	∗
N). The multiplicative correction O(1) in (28) comes from the eigenvectors in

(27). This correction can be neglected if μ0 stays finite for N → ∞. Below we assume that
these two hypotheses hold. This implies from (21) a straightforward relation between the
entropy h and the spectral radius λ[T(xN...1)] of T(xN...1):

h = μ0 = lim
N→∞

{
− 1

N
lnλ[T(xN...1)]

}
. (29)

The relation between the top Lyapunov exponent and the entropy is known [12, 13]. The
above discussion emphasizes the role of the spectral radius in this relation [29].

5 Generating Function and Atypical Realizations

While the entropy characterizes typical realizations of the process, it is of interest (mainly
for a finite number of realizations) to describe atypical realizations, those which fall out of
the typical set 	∗

N .
To this end let us introduce the generating function [9]

�N(n,N) =
∑

xN...1

λn[T(xN...1)], (30)

where n is a non-negative number. (Note that �N(n,N) means �(n,N) in degree of N .)
The generating function �N(n,N) is an analog of the partition sum in statistical physics

[9].5 Writing

�N(n,N) =
∑

xN...1∈	∗
N

λn[T(xN...1)] +
∑

xN...1 �∈	∗
N

λn[T(xN...1)], (31)

5�(n,N) is sometimes called the generalized Lyapunov exponent. It is closely related to the concept of
multi-fractality [22].
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one notes that in the limits N → ∞ and n → 1 the second contribution in the RHS of (31)
can be neglected due to definition (21, 23) of the typicality, and then �N(n,N) = �N(n) =
e−(n−1)Nh; see (27, 28). Here we already noted that �(n,N) does not depend on N for
N → ∞, and denoted (in this limit) �(n,N) = �(n).

Taking into account that �(1) = 1, the entropy h is calculated via derivative of the gen-
erating function:

h = − 1

N

∂�N(n)

∂n

∣∣∣∣
n=1

= −d�(n)

dn

∣∣∣∣
n=1

≡ −�′(1) (32)

= −
∑

xN...1

λ[T(xN...1)] lnλ[T(xN...1)]. (33)

The generating function (30) can be employed for estimating the weight of atypical se-
quences. This estimate is known as the Chernoff bound [7, 9], and now we briefly recall its
derivation adopted to our situation.

Consider the overall weight of atypical sequences, which have probability lower than
the typical-sequence probability e−Nh; see (21, 23). These atypical sequences are defined to
satisfy

− lnλ[T(xN...1)] > (1 + η)Nh, (34)

where η > 0 quantifies the deviation from the typical behavior. Let
∑

xN...1
be the sum over

all those xN...1 that satisfy to (34). Define an auxiliary probability distribution P̃ (xN...1|n) =
�−N(n,N)λn[T(xN...1)]. The sought weight of the atypical sequences is expressed as (η > 0
and 0 < n < 1):

∑
xN...1

λ[T(xN...1)] = �N(n,N)
∑

xN...1
P̃ (xN...1|n) e(1−n) lnλ[T(xN...1)]

≤ eN[ln�(n,N)+(n−1)(1+η)h]∑
xN...1

P̃ (xN...1|n) ≤ eN[ln�(n,N)+(n−1)(1+η)h].
(35)

Equation (35) leads to the following upper (Chernoff) bound for the weight of atypical
sequences with the probability lower than the e−Nh:

∑

− lnλ[T(xN...1)]>(1+η)Nh

λ[T(xN...1)] ≤ e−Nf (η), (36)

f (η) ≡ max
0<n<1

[
ln

1

�(n)
+ (1 − n)(1 + η)h

]
, η > 0. (37)

Analogously to (35) we get for the weight of the atypical sequences with the probability
higher than the e−Nh (0 < η < 1):

∑

− lnλ[T(xN...1)]<(1−η)Nh

λ[T(xN...1)] ≤ e−Ng(η), (38)

g(η) ≡ max
n>1

[
ln

1

�(n)
+ (1 − n)(1 − η)h

]
, η > 0. (39)

The functions f (η) and g(η) in (37) and (39), respectively, are called the rate func-
tions [7]. It is seen that f (η) and g(η) are the Legendre transforms of ln�(n). The latter is
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a convex function of n, d2

d2n
ln�(n) ≥ 0, as follow from its definition (30). Then f (η) and

g(η) are convex as well [9]. For example taking into account that n and η are related via the
extremum condition d

dn
ln�(n) = −(1 + η)h, we get f ′′(η) = ( dn

dη
)2[ d2

dn2 ln�(n)]n=n(η) ≥ 0.
While the above reasoning is based on the Chernoff bounds, there is another (related, but

more formal) approach to describing atypical realization, which is known as the measure
concentration theory. For a recent application of this theory to HMP see [25].

6 Zeta Function and Its Expansion over the Periodic Orbits (Cycles)

6.1 Zeta Function and Entropy

In this section we show how to adopt the method proposed in [26, 27, 29] for calculating
the moment-generating function �(n) (and thus for calculating the entropy h via (32)). The
method is based on the concepts of the zeta-function and periodic orbits.

Define the inverse zeta-function as [9, 26–28, 30]

ξ(z, n) = exp

[
−

∞∑

m=1

zm

m
�m(n,m)

]
, (40)

where �m(n,m) ≥ 0 is given by (30). The analogs of (40) are well-known in the theory
of dynamic systems; see [28] for a mathematical introduction, and [26, 27, 29, 30] for a
physicist-oriented discussion.

Since for a large N , �N(n,N) → �N(n), the zeta-function ξ(z, n) has a zero at z = 1
�(n)

:

ξ

(
1

�(n)
,n

)
= 0. (41)

Indeed for z close (but smaller than) 1
�(n)

, the series
∑∞

m=1
zm

m
�m(n,m) → ∑∞

m=1
[z�(n)]m

m

almost diverges and one has ξ(z) → 1 − z�(n).
Recalling that �(1) = 1 and taking n → 1 in

0 = d

dn
ξ

(
1

�(n)
,n

)
= − �′(n)

�2(n)

∂

∂z
ξ

(
1

�(n)
,n

)
+ ∂

∂n
ξ

(
1

�(n)
,n

)
, (42)

we get for the entropy from (32)

h = −�′(1) = −
∂
∂n

ξ(1,1)

∂
∂z

ξ(1,1)
. (43)

6.2 Expansion over the Periodic Orbits

In Appendix 5.2 we describe following to [26–30] that under conditions (13, 14) one can
expand ξ(z, n) over the periodic orbits:

ξ(z, n) =
∞∏

p=1

∏

�p∈Per(p)

[1 − zpλn[T (xγ1) . . . T (xγp )]], (44)

�p ≡ (γ1, . . . , γp), (45)
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where γi = 1, . . . ,M are the indices referring to the realizations of the random process X .
The set of periodic orbits Per(p) contains sequences �p = (γ1, . . . , γp) selected according
to the following two rules: (i) �p turns to itself after p successive cyclic permutations of its
elements, but it does not turn to itself after any smaller (than p) number of successive cyclic
permutations; (ii) if �p is in Per(p), then Per(p) contains none of those p − 1 sequences
obtained from �p under p − 1 successive cyclic permutations. Concrete examples of Per(p)

for M = 2,3 are given in Tables 4 and 5.
It is more convenient to present (44) as an infinite sum [26, 27, 29, 31]

ξ(z, n) = 1 − z

M∑

l=1

λn
l +

∞∑

k=2

ϕk(n)zk, (46)

where we defined

λn
α...β ≡ λn[T (xα) . . . T (xβ)], λn

α+β ≡ λn[T (xα)]λn[T (xβ)], (47)

and where ϕk(n) are calculated from (44, 45) and recipes presented in Appendix 5. These
calculations become tedious for large values of k in ϕk(n). This is why in Appendix 5.3 it is
shown how to generate ϕk(n) via Mathematica 5.

For two (M = 2) realizations of the HMP we employ the notations (47) and get for the
first few terms of the product (44) [consult Table 4 for understanding the origin of these
terms]

ξ(z, n) = (1 − zλn
1) (1 − zλn

2) (1 − zλn
12) (1 − zλn

122) (1 − zλn
112) (48)

(1 − zλn
1222) (1 − zλn

1112) (1 − zλn
1122)

∞∏

p=5

∏

�p∈Per(p)

(
1 − zpλn

γ1...γp

)
. (49)

For the first six terms of the expansion (46) we get

ϕ2(n) = −λn
12 + λn

1+2, (50)

ϕ3(n) = −λn
221 + λn

2+21 − λn
112 + λn

1+12, (51)

ϕ4(n) = −λn
1122 + λn

2+211 − λn
1222 + λn

2+122 − λn
1112 + λn

1+211 (52)

−λn
1+2+12 + λn

1+122, (53)

ϕ5(n) = −λn
11222 + λn

1+1222 − λn
11122 + λn

2+1112 (54)

−λn
11112 + λn

1+1112 − λn
12222 + λn

2+1222 (55)

−λn
12121 + λn

1+1122 − λn
12122 + λn

2+1122 (56)

−λn
1+2+122 + λn

12+122 − λn
1+2+112 + λn

12+112, (57)

ϕ6(n) = −λn
111122 + λn

1+11122 − λn
112122 + λn

1+12122 − λn
111222 + λn

1+11222 (58)

−λn
111212 + λn

1+11212 − λn
112222 + λn

1+12222 − λn
222121 + λn

2+22121 (59)
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−λn
122222 + λn

2+12222 − λn
111112 + λn

1+11112 − λn
112212 + λn

2+12121 (60)

−λn
1+12+122 + λn

1+12122 − λn
2+12+211 + λn

12+1122 − λn
1+12+211 + λn

12+2111 (61)

−λn
2+12+122 + λn

12+1222 − λn
1+2+1222 + λn

2+11222 − λn
1+2+2111 + λn

2+21111 (62)

−λn
1+2+1122 + λn

122+211. (63)

In Sect. 7.5 we study examples, where the expansion (46) can be summed exactly. In
these examples the sum in (46) exponentially convergences for |z| < αn, where α > 1 is a
parameter. As discussed in [30], the exponential convergence of ξ(z) is expected to be a
general feature, and it is supported by rigorous results on the structure of the zeta-function.

6.2.1 The Structure of ϕk(n)

Note that ϕk consists of even number of terms. The terms are grouped in pairs, e.g., [−λn
221 +

λn
2+21] + [−λn

112 + λn
1+12] for ϕ3, and analogously for other ϕk’s. Each pair has the form

−λn
A + λn

B , where A and B have the same number of symbols 1 and the same number of
symbols 2. This feature ensures that when the spectral radius of the product is equal to the
product of the spectral radii, all the terms ϕk will vanish. Ultimately, this is the feature that
enforces the convergence of (46) [26, 27, 30]. Once it converges, we can approximate ξ(z, n)

by a polynomial of a finite order.
The set of pairs for each ϕk can be divided further into several groups. The first group

is formed by (50) and (51) for ϕ2 and ϕ3, respectively, by (52) for ϕ4, by (54–56) for ϕ5,
and by (58–60) for ϕ6. The pairs in this group have the form −λn

Al + λn
A+l , where l = 1 or

l = 2. If A contains m indices and if m is large, we expect lnλn
A = O(m) according to the

discussion in Sect. 4.2. Then

−λn
Al + λn

A+l → 0 for m → ∞. (64)

The second group is given by (53) for ϕ4, (57) for ϕ5, and by (61, 62) for ϕ6. In this
second group the terms have the form −λn

A+B+C + λn
A+BC = λn

A(λn
B+C − λn

BC). Here the
term (λn

B+C − λn
BC) has the structure of the first group. For B or/and C containing a large

number of indices, (λn
B+C − λn

BC) will go to zero.
Finally the third group appears only for k ≥ 6. For k = 6 this group has only one pair

given by (63). The members of this third group are of the form −λn
A+B+CD + λn

ABD+C .
Let us return to (64), which holds, in particular, for A consisting of the same type of

indices (e.g., A containing only 1’s). Recalling our discussions after (28) and after (63), and
expanding A over its eigenvalues and eigenvectors, we conclude heuristically that for the
convergence radius of

∑∞
k=2 ϕk(n)zk in (46) to be sufficiently larger than 1, it is necessary

to have for the transfer-matrices T (x) (using notations (12))

λ[T (x)] �≈ l1[T (x)], λ[T (x)] �≈ 1, (65)

i.e., closer is λ[T (x)] to l1[T (x)] and or λ[T (x)] to 1, more terms are needed in the expan-
sion (46) for the reliable estimate of the entropy. Note that if λ[T (x)] = l1[T (x)] > l2[T (x)],
the first relation in (65) should be modified to λ[T (x)] �≈ l2[T (x)]. We shall meet such ex-
amples below; see (81) and the discussion before it.

Recall from (43) that for calculating the entropy we need to know ξ(z, n) in the vicinity
of z = 1 and n = 1. If the qualitative conditions (65) are satisfied, we expect that the vicinity
of z = 1 and n = 1 is included in the convergence area. The convergence of expansions
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similar to (46) is discussed in [26, 27, 29, 30]. In particular, Refs. [26, 27, 29] employ
criteria similar to (65) and test them numerically.

In the context of expansion (46) we should mention the results devoted to analyticity
properties of the top Lyapunov exponent [32, 33] and of the entropy for HMP [34]. In par-
ticular, Ref. [34] states that the entropy h of HMP is an analytic function of the Markov
transition probabilities (3), provided that these probabilities are positive. At the moment it
is unclear for the present author how in general this analyticity result can be linked to the
expansion (46). However, we show below on concrete examples that the expansion (46) can
be recast into an expansion over the Markov transition probabilities (3).

7 The Simplest Aggregated Markov Process

7.1 Definition

An Aggregated Markov Process (sometimes called a Markov source) is a particular case
of HMP, where the probabilities π(x|s) in (5) take only two values 0 and 1 [2, 6]. Thus
it is defined by the underlying Markov process S together with a deterministic function
F(si) that takes the realizations of the Markov process to those of the aggregated process:
X = (X1, X2, . . .) = (F (S1),F (S2), . . .). The function F is not one-to-one so that at least
two realizations of S are lumped together into one realization of X .

The simplest example is given by a Markov process S = {S0, S1, . . .} with three realiza-
tions Si = 1,2,3, such that, e.g., the realizations 2 and 3 of Si are not distinguished from
each other and correspond to one realization 2 of the observed process Xi [see Fig. 1]:

F(1) = 1, F (2) = F(3) = 2, (66)

π(1|1) = 1, π(1|2) = 0, π(1|3) = 0, (67)

π(2|1) = 0, π(2|2) = 1, π(2|3) = 1. (68)

The transition matrix of a general three-realization Markov process is [see Fig. 1]

P =
⎛

⎝
1 − p1 − p2 q1 r1

p1 1 − q1 − q2 r2

p2 q2 1 − r1 − r2

⎞

⎠ , |st〉 ∝
⎛

⎝
q1(r1 + r2) + q2r1

r2(p1 + p2) + p1r1

p2(q1 + q2) + p1q2

⎞

⎠ , (69)

where all elements of P are positive, and where we presented the stationary vector |st〉 up to
the overall normalization.6

The process X = {X1, X2, . . .} has two realizations: Xi = 1,2. The corresponding transfer
matrices read from (7)

T (1) =
⎛

⎝
1 − p1 − p2 q1 r1

0 0 0
0 0 0

⎞

⎠ , T (2) =
⎛

⎝
0 0 0
p1 1 − q1 − q2 r2

p2 q2 1 − r1 − r2

⎞

⎠ . (70)

Note that the second (sub-dominant) eigenvalue of the transfer-matrix product T(xN...1) =∏N

k=1 T (xk) (with separate transfer-matrices defined by (70)) is equal to zero, since this

6Note that some authors present the Markov transition matrices P is such a way that the elements in each
raw sum to one. This amounts to transposition of (69). The representation (69) is perhaps more familiar to
physicists.
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Fig. 1 Schematic representation of the hidden Markov process defined by (66–70). The gray squares and
gray arrows indicate, respectively, on the realization of the internal Markov process and transitions between
the realizations; see (69). The circles and black arrows indicate on the realizations of the observed process.
The gray arrows are probabilistic; the corresponding probabilities are indicated next to them. The black
arrows are deterministic; see (66)

eigenvalue can be presented as that of the matrix T (1)A, where A is some 3 × 3 matrix. The
only exclusion, which has a non-zero sub-dominant eigenvalue, is the realization of X that
does not contain 1 at all: T(2 . . .2) = T N(2).

The considered HMP (66–70) belongs to the class of HMP with unambiguous symbol,
since the Markov realization 1 is not corrupted by the noise; see Fig. 1. For such HMP,
Ref. [34] reports several results on the analytic features of the entropy.

7.2 Unifilar Process

Before studying in detail the HMP defined by (66–70), let us mention one example of HMP,
where the entropy can be calculated directly [2, 6]. This unifilar process is defined as follows
[6]: for each realization si of the Markov process S consider realizations sj with a strictly
positive transition probability p(sj |si) > 0. Now require that the realizations F(sj ) of Xj

are distinct. Thus given the realization si of S1, there is one to one correspondence between
the realizations of (X1, X2, . . .) and those of (S1, S2, . . .). Write the block-entropy of X as

H(XN, . . . , X1) = H(XN, . . . , X1|S1) + H(S1) − H(S1|X1, . . . , XN), (71)

where H(A|B) ≡ −∑
a,b Pr(a, b) ln Pr(a|b) is the conditional entropy of the stochastic

variable A given B. Due to the definition of the unifilar process: H(XN, . . . , X1|S1) =
H(SN, . . . , S2|S1). The latter is worked out via the Markov feature:

H(SN, . . . , S2|S1) = (N − 1)hmarkov, (72)

hmarkov = −
∑

k,l

pst(k)p(l|k) lnp(l|k), (73)

where pst(k) is the stationary Markov probability defined in (4), and where p(l|k) are the
Markov transition probabilities from (3). Since H(S1) and H(S1|X1, . . . , XN) in (71) are
finite in the limit N → ∞, the entropy h(X ) of the unifilar process reduces to that of the
underlying Markov process hmarkov [6].

Note that any finite-order Markov process (conventionally assuming that the usual
Markov process is of first order) can be presented as a unifilar process. There are, how-



548 A.E. Allahverdyan

ever, unifilar processes that do not reduce to any finite-order Markov process [6].7 The main
problem in identifying unifilar processes is that even if X is not unifilar for given S , it can be
still unifilar with respect to another Markov process S ′ (see Sect. 7.3 below for the simplest
example). This makes especially difficult the recognition of unifilar processes that do not
reduce to any finite-order Markov process.

7.3 Particular Cases

We now return to the HMP (66–70) and discuss some of its particular cases.

1. For q2 = r2 and q1 = r1 all the terms ϕk with k ≥ 3 in the expansion (46) are zero. One
can check that for this case the observed process X is by itself Markov.

2. For (1 − q1 − q2)(1 − r1 − r2) = q2r2, one can check that φk = 0 for k ≥ 4. Now the
process X is the second-order Markov: P (xk|xk−1, xk−2, xk−3) = P (xk|xk−1, xk−2).

Thus at least for these two cases the calculation of the entropy is straightforward.
The above two facts tend to clarify the meaning of the expansion (46). It is tempting to

suggest that if the expansion (46) is cut precisely at a positive integer K > 2, i.e., ϕk≥K = 0,
then the corresponding process X is K − 2-order Markovian. If true, this will give conve-
nient conditions for deciding on the finite-order Markov feature, and will mean that the suc-
cessive terms in (46) are in fact approximations the HMP via finite-order Markov processes.

7.4 Upper and Lower Bounds for the Entropy

Before presenting the main results of this section, let us recall that the entropy of any (sta-
tionary) HMP satisfies the following inequalities [7]:8

H(X2|S1) ≤ h ≤ H(X2|X1) ≡ H(2) − H(1), (74)

where H(A|B) = −∑
a,b Pr(A = a, B = b) ln Pr(A = a|B = b) and H(N) are, respectively,

the conditional entropy and the block entropy defined in (16). Employing (5, 7) we deduce

Pr(X2 = x|S1 = s) =
L∑

s′=1

Ts′s(x). (75)

This equation together with the stationary probability (69) of the Markov process is suffi-
cient for calculating H(X2|S1) for the HMP (66, 70):

H(X2|S1) = pst(1)χ(p1 + p2) + pst(2)χ(q1) + pst(3)χ(r1), (76)

χ(p) ≡ −p lnp − (1 − p) ln(1 − p). (77)

The upper bound H(X2|X1) is calculated directly from (8, 10, 16).

7The example of such a process given in [6] is not minimal. The minimal example is given by four-realization
Markov process with non-zero transition probabilities p(4|1), p(3|4), p(2|3), p(1|2), p(1|1), p(2|2), p(3|3)

and p(4|4) (all other transition probabilities are zero), and two realizations of Xi such that F(1) = F(3) = 1,
F(2) = F(4) = 2. The unifilar process X does not reduce to a finite-order Markov process, since, e.g., there
are two different mechanisms of producing the sequence 1 . . .1. This means that P(1|111) is not equal to
P(1|11), etc.
8Equation (74) is a particular case of a slightly more general inequality [7, 11]. For our purely illustrative
purposes (74) is sufficient.
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7.5 Generating Function and Entropy: Exact Results

For a particular four-parametric class of HMP (66–70) we were able to sum exactly the
expansion (46).9 This class is characterized by the condition that the two leading eigenvalues
of the transfer-matrix T (2) in (70) have equal absolute values [the third eigenvalue is equal
to zero]:

λ[T (2)] = λ1[T (2)]. (78)

A direct inspection shows that this condition amounts to two possible forms (80) and (88)
of the transition matrix P. These two cases are studied below.

7.5.1 First Case

For this first case the transition matrix is obtained from (70) under10

r2 = 0 and r1 = q1 + q2. (79)

This leads from (69) to the transition matrix

P =
⎛

⎜⎝
1 − p1 − p2 q1 q1 + q2

p1 1 − q1 − q2 0

p2 q2 1 − q1 − q2

⎞

⎟⎠ . (80)

It is seen that the realization {Sk+1 = 2, Sk = 3} for the Markov process is prohibited. For
the HMP there are no prohibited sequences.

The inverse zeta-function reads from (46):

ξ(z, n) = 1 − [(1 − p1 − p2)
n + (1 − q1 − q2)

n]z
+ [(1 − p1 − p2)

n(1 − q1 − q2)
n − (p1q1 + p2(q1 + q2))

n]z2

+ z3[p1q2(q1 + q2)]n[�(y,−n,b) − �(y,−n,b + 1)], (81)

where we defined

b ≡ (1 − q1 − q2)
p2(q1 + q2) + p1q1

p1q2(q1 + q2)
, (82)

y ≡ (1 − q1 − q2)
nz, (83)

and where �(y,−n,b) is the Lerch �-function:

�(y,−n,b) =
∞∑

k=0

(k + b)nyk. (84)

In this representation, which led to (81), the sum converges for |y| < 1 or for z <

(1 − q1 − q2)
−n ≥ 1. The convergence radius tends to one for q1 + q2 → 0, or, equivalently,

for λ[T (2)] → 1; see (70). This violates the second qualitative condition in (65).

9This was done by hands, checking the separate terms of the expansion (44).
10Or, alternatively, via q2 = 0 and q1 = r1 +r2. This, however, does not amount to anything new as compared
to (80).
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Fig. 2 Entropy (85) of HMP
(69, 70, 80) versus q = q2 for
p2 = q1 = 0. Normal line:
p1 = 0.5. Thick line: p1 = 0.75.
Upper dashed line: p1 = 0.05.
Lower dashed line: p1 = 0.01. It
is seen that for a small value of
p1, the entropy h is nearly
constant for a range of q = q2

Table 1 For two set of
parameters of the HMP (66, 79,
80) we present the exact value of
entropy h obtained from (85), the
lower bound H(X2|S1), and the
upper bound H(X2|X1); see (74)

h H(X2|S1) H(X2|X1)

p1 = 0.75

p2 = 0.10 0.569580 0.557243 0.572373

q1 = 0.25

q2 = 0.20

p1 = 0.30

p2 = 0.20 0.684796 0.682486 0.684843

q1 = 0.55

q2 = 0.10

Using (43) we get from (81) for the entropy:

h = − 1

p1 + p2 + q1 + q2 + p1q2
q1+q2

×
{
(1 − p1 − p2)(q1 + q2) ln(1 − p1 − p2)

+ (1 − q1 − q2)

(
p1 + p2 + p1q2

q1 + q2

)
ln(1 − q1 − q2)

+ p1q2 ln[p1q2(q1 + q2)] + [(p1 + p2)q1 + p2q2] ln[(p1 + p2)q1 + p2q2]

+ p1q2(q1 + q2)
[
�′

[2](1 − q1 − q2,−1, b) − �′
[2](1 − q1 − q2,−1, b + 1)

]}
, (85)

where b is defined in (82), and where

�′
[2](y,−1, b) =

∞∑

k=0

ln

[
1

k + b

]
(k + b)yk. (86)

The behavior of h is illustrated in Fig. 2 for particular values of p1, p2, q1 and q2. Table 1
compares the exact expression (85) with the upper and lower bounds (74).

The analytic features of h given by (85) as a function of the Markov transition probabili-
ties p1, p2, q1 and q2, agree with the results obtained in [34]. In particular, note that for p1 +
p2 → 1 the entropy h becomes non-analytic due to the term ∝ (1−p1 −p2) ln(1−p1 −p2).
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7.5.2 Second Case

The second possibility of satisfying (78) is given by

q1 + q2 = 1 and r1 + r2 = 1, (87)

P =
⎛

⎜⎝
1 − p1 − p2 q r

p1 0 1 − r

p2 1 − q 0

⎞

⎟⎠ . (88)

The realizations of the corresponding Markov process do not contain {Sk+1 = 2, Sk = 2}
and {Sk+1 = 3, Sk = 3}. Again, the realizations of the HMP do not have any prohibited
sequence.

The inverse zeta-function reads from (46)

ξ(z, n) = 1 − [
(1 − p1 − p2)

n + (1 − q)n/2(1 − r)n/2
]
z

+ [−(p1q + p2r)
n + (1 − p1 − p2)

n(1 − q)n/2(1 − r)n/2
]
z2

+ z3

1 + z(1 − q)n/2(1 − r)n/2

[
(p1q + p2r)

n(1 − q)n/2(1 − r)n/2

− (p1r(1 − q) + p2q(1 − r))n
]
. (89)

The series that led to (89) converges for |z| < (1−q)−n/2(1− r)−n/2. Again the convergence
radius going to one violates the second qualitative condition in (65).

Equations (32, 89) imply for the source entropy:

h = − 1

2(p1 + p2) + q(1 − p1) + r(1 − p2) − qr

× {[q(1 − r) + r](1 − p1 − p2) ln(1 − p1 − p2)

+ (p1 + p2) (1 − q) (1 − r) ln[(1 − q)(1 − r)] + (p1q + p2r) ln[p1q + p2r]
+ [p2q(1 − r) + p1(1 − q)r] ln[p2q(1 − r) + p1(1 − q)r]}. (90)

Applying the general definition (73) of the Markov entropy to the particular case (69) we
get for the Markov entropy

hmarkov = − 1

2(p1 + p2) + q(1 − p1) + r(1 − p2) − qr

× {[q(1 − r) + r][(1 − p1 − p2) ln(1 − p1 − p2) + p1 lnp1 + p2 lnp2]
× [(1 − r)(p1 + p2) + p1r][q lnq + (1 − q) ln(1 − q)]
× [p2 + p1(1 − q)][r ln r + (1 − r) ln(1 − r)]}. (91)

Comparing (90, 91) one can check [e.g., numerically] that hmarkov > h, as should be, since
lumping several states together decreases the entropy. Table 2 compares the exact value (90)
for the entropy with the upper and lower bounds (74).
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Table 2 For two set of
parameters of the HMP (69, 70,
88) we present the exact value of
entropy h obtained from (90), the
lower bound H(X2|S1), and the
upper bound H(X2|X1); see
(74). The parameters p1, p2, q

and r are tuned such that
H(X2|S1) and H(X2|X1)

provide rather tight bounds on h

h H(X2|S1) H(X2|X1)

p1 = 0.1

p2 = 0.1 0.528531 0.525571 0.528534

q = 0.2

r = 0.3

p1 = 0.2

p2 = 0.2 0.659897 0.656974 0.659901

q = 0.3

r = 0.4

Fig. 3 The rate functions f (η)

and g(η) defined by (37) and
(39), respectively for the HMP
given by (70, 88, 89). Normal
line: g(η). Dashed line: f (η).
For the parameters in (88) we
take: p1 = 0.2, p2 = 0.3,
q = 0.05, and r = 0.01. For these
values the entropy (90) is
h = 0.166671

7.5.3 Rate Functions for Large Deviations

Recall that the rate function f (η) (g(η)) defined in Sect. 5, describe the weight of atypical
sequences with the probability smaller (larger) than the typical sequence probability e−Nh.
The positive parameter η defines the amount of this smallness (largeness); see (37) and (39).

The calculation of f (η) and g(η) for the considered HMP model (88, 70) is straightfor-
ward. One finds out the zero of the ξ -function given by (89). This will define, via (41), the
moment-generating function �(n). If there are several zeros of ξ(z, n) as a function of z, we
select the one that goes to z = 1 for n → 1. Then f (η) and g(η) are calculated from their
definitions (37) and (39).

The behavior of f (η) and g(η) as functions of η is presented in Figs. 3 and 4. For each
figure we take different sets of parameters p1, p2, q and r ; see (88) for their definition. To
make this difference explicit let us denote f3(η), g3(η) and f4(η), g4(η) for Fig. 3 and Fig. 4,
respectively.

Now let us observe that

f3(η) < f4(η), g3(η) < g4(η), (92)

g3(η) > f3(η), g4(η) < f4(η). (93)

For explaining these inequalities we note that for the parameters of Fig. 3 the entropy is
smaller than h in Fig. 4:

h3 < h4, (94)



Entropy of Hidden Markov Processes via Cycle Expansion 553

Fig. 4 The same as in Fig. 3 but
with q = 0.1 and r = 0.4. For
these values the entropy (90) is
h = 0.619519, which is larger
than the entropy in Fig. 3

which means that the typical set 	∗
N for Fig. 4 contains more sequences, so there remains less

of them outside, which may explain (92). For the same reason (94), the probability of each
typical sequence is higher for the parameters in Fig. 3. Thus for the parameters presented
in Fig. 3 more high-probability sequences are included in the corresponding typical set 	∗

N .
This may explain (93).

In further numerical checking it was noted that the above relation between (92) and
(93) from one side, and (94) from another side, seems to be much more general than these
particular examples.

8 Binary Symmetric Hidden Markov Process

8.1 Definition and Symmetries

This is another popular (and simple to define) example of HMP. Now the Markov process
has two states 1 and 2. The realizations of the observed (Hidden Markov) process also take
two values 1 and 2. The internal Markov process is driven by the conditional probability

P =
(

p(1|1) p(1|2)

p(2|1) p(2|2)

)
=

(
1 − q q

q 1 − q

)
. (95)

The stationary probability for this Markov process is found via (4): pst(1) = pst(2) = 1
2 .

The probabilities for the observations 1 or 2 given the internal state read

π(xi |si) =
(

π(1|1) π(1|2)

π(2|1) π(2|2)

)
=

(
1 − ε ε

ε 1 − ε

)
, (96)

where ε is the error probability during the observation.
For the transfer matrices we have:

T (1) =
(

ε(1 − q) εq

(1 − ε)q (1 − ε)(1 − q)

)
, T (2) =

(
(1 − ε)(1 − q) (1 − ε)q

εq ε(1 − q)

)
. (97)

T (2) is obtained from T (1) via ε → 1 − ε.
The following symmetry features are deduced directly from (95–97):

(1) For any N the probability P (xN, . . . , x1;q, ε) of the binary symmetric HMP is invariant
with respect to ε → 1 − ε: P (xN, . . . , x1;q, ε) = P (xN, . . . , x1;q,1 − ε).
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(2) The probability P (xN, . . . , x1;q, ε) is invariant with respect to the full “inversion” of
the realization (xN , . . . , x1), e.g. P (1,2,1,1;q, ε) = P (2,1,2,2;q, ε).

(3) In general, the probability P (xN, . . . , x1;q, ε) is not invariant with respect to q → 1−q ,
e.g., P (1,2;q, ε) − P (1,2;1 − q, ε) = 1

2 (1 − 2ε)(2q − 1). However, for each given
realization (xN , . . . , x1) one can find another unique realization (x̄N , . . . , x̄1) such that
P (xN, . . . , x1;q, ε) = P (x̄N , . . . , x̄1;1 − q, ε). The logics of relating (xN , . . . , x1) to
(x̄N , . . . , x̄1) should be clear from the following example: if (x4, . . . , x1) = (1,2,2,1),
then (x̄4, . . . , x̄1) = (2,2,1,1). In more detail, x̄4 = 2 is defined to be different from
x4 = 1, and once x3 = 2 is different from x4 = 1, x̄3 = 2 does not differ from x̄4 = 2,
etc. It should be clear (e.g., by induction) that for a given (xN , . . . , x1), (x̄N , . . . , x̄1) is
indeed unique.

This feature means, in particular, that the entropy h of the binary symmetric HMP—
being according to (16, 17) a symmetric function of all probabilities P (xN, . . . , x1)—
is invariant with respect to q → 1 − q: h(q, ε) = h(1 − q, ε), in addition to being in-
variant with respect to ε → 1 − ε.

(4) In general, the probabilities P (xN, . . . , x1) are not invariant with respect to a cyclic
interchange of the realizations, e.g., P (1,2,1;q, ε) − P (1,1,2;q, ε) = 1

2 (1 − 2ε)2 ×
q(2q − 1).

For the considered binary symmetric HMP we did not find any exactly solvable situation.
Thus, we employed (46) and calculated ξ(z, n) by approximating the infinite sum in the RHS
of (46) via a polynomial of order K :

∑K

k=2 ϕk(n)zk .11 This approximation was suggested in
[26, 27] and it is based on the fact that the sum supposed to converge exponentially at least
in the vicinity of z = 1 and n = 1. This is what we saw for the exactly solvable situations
(81) and (89). The qualitative criterion for the exponential converges was suggested in [26,
27, 29] and was discussed by us around (65). Since both transfer-matrices in (97) have the
same eigenvalues

1

2

[
1 − q ±

√
q2 + (1 − 2q)(1 − 2ε)2

]
, (98)

for the studied binary symmetric HMP there are several cases, where the [qualitative] con-
ditions (65) are violated: (i) q → 0 and ε → 1

2 ; (ii) q → 1; (iii) q → 0 and ε → 0. In these

three cases we expect that approximating ξ(z, n) by
∑K

k=2 ϕk(n)zk will not be feasible, since
large values of K will be required to achieve a reasonably high precision. Fig. 5 and Table
3 present the results for the entropy obtained in the above approximate way and compare
them with the upper and lower bounds, as given by (74).

8.2 Small-Noise Limit

For ε = 1
2 or for q = 1

2 the process becomes memory-less: P (x1, . . . , xN) = P (x1) . . . P (xN).
Here all the functions ϕk in (46) are equal to zero. Another particular case is the limit ε → 0
(no noise), where the hidden Markov process degenerates into the original Markov process.
It is straightforward to check that in (46) for the entropy only the term φ2 is different from
zero, while φk = 0 for k ≥ 3. This produces the well-known expression (73) for the entropy
of a Markov process.

11The terms in this expansion can perhaps be re-arranged so as to facilitate the convergence. Since in the
present paper the numerical calculations serve mainly illustrative purposes, we shall not dwell into this aspect.
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Table 3 For two sets of the parameters q and ε of the binary symmetric HMP (95, 96, 97) we present the
entropy h obtained by approximating (46) via a polynomial or order 2, 13 and 12, respectively. These values
are denoted by h2, h13 and h12. We compare hk with the lower bound H(X2|S1), and the upper bound

H(X2|X1); see (74). It is seen that the relative difference h13−h2
h13

is not larger than 0.02

h2 h13 h12 H(X2|S1) H(X2|X1)

q = 0.2

ε = 0.45 0.687811 0.693108 0.693100 0.691346 0.693129

q = 0.25

ε = 0.4 0.681322 0.692884 0.692881 0.688139 0.692947

Fig. 5 Entropy of the binary
hidden Markov chain (normal
line) versus the error probability
ε for q = 0.1. Dashed lines:
upper and lower bounds for the
entropy as given by (74). The
entropy is calculated from (46,
43) approximating the infinite
sum in (46) by a polynomial or
the order 13

Let us work out the vicinity of ε = 0, assuming that ε is small (quasi-Markov situation).
One can check that

ϕk = O(εk−2) for k ≥ 3. (99)

Thus for finding the entropy and the generating function within the order O(ε2), we need to
expand ϕk with k = 1,2,3,4 over ε and select all the terms of order O(ε) and O(ε2). We
write down explicitly the approximation of ξ(z, n) via the polynomial of order 4 (higher-
order terms ϕk≥5 are not needed, since they do not contribute to the order O(ε2)):

ξ(z, n) = 1 + zϕ1(n) + z2ϕ2(n) + z3ϕ3(n) + z4ϕ4(n) + O(z3). (100)

Using (98) and (50–53) we get after straightforward algebraic calculations (taking for sim-
plicity q < 1

2 )

ϕ1(n) = −2(1 − q)n

+ 2εn(1 − q)n−2(1 − 2q)

− ε2n(1 − q)n−4(1 − 2q){(1 − 2q)(n − 1 − q) + q} + O(ε3), (101)

ϕ2(n) = (1 − q)2n − q2n

− 2εn(1 − 2q)
[
(1 − q)2(n−1) + q2(n−1)

]
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− ε2n(1 − 2q)[q2(n−2){(1 − 2q)(q + 2n − 3) − q}
+ (1 − q)2(n−2){(1 − 2q)(q + 1 − 2n) − q}] + O(ε3), (102)

ϕ3(n) = 2εn(1 − 2q)2(1 − q)n−2q2(n−1) − ε2n(1 − 2q)2(1 − q)n−4q2(n−2)

× [5 − 3n + 4q(3n − 5) + 2q2(16 − 7n) + 4q3(n − 6) + 10q4] + O(ε3), (103)

ϕ4(n) = ε2n(1 − 2q)3(1 − q)2(n−2)q2(n−2)[2 − 4q(1 − q) − n(1 − 2q)] + O(ε3). (104)

Note that all ε corrections nullify for q = 1
2 , once in this limit we should get a memory-less

process. These equations produce for the entropy from (100, 43):

h = −(1 − q) ln(1 − q) − q lnq (105)

− 2ε(1 − 2q) ln

(
1 − q

q

)
(106)

− 2ε2(1 − 2q)

[
ln

(
1 − q

q

)
+ 1 − 2q

4(1 − q)2 q2

]
+ O(ε3). (107)

Equation (105) is just the Markov entropy (73) obtained in the limit ε = 0. Equations (106)
is the first correction to the Markov situation; it is obtained in [12, 14]. The second cor-
rection (107) is reported in [16]. The authors of [16] also obtain the higher-order correc-
tions employing the mapping of the binary symmetric HMP to the one-dimensional Ising
model. These higher-order correction can be also obtained within the present method. Thus
we demonstrated that the small-noise (quasi-Markov) situation can be adequately explored
with the present method.

In addition we obtain the small-noise expressions (101–104) for the zeta-function. This
result is new and it allows to find the moment-generating function, which contains more in-
formation than the entropy, e.g., (100–104) can be used for approximating the rate functions
(37) and (39). In particular, for the generating function we get from (41) and (101–104)

�(n) = qn + (1 − q)n − εn(1 − 2q)[(1 − q)2nq2 − (1 − q)2q2n]
q2(1 − q)2[(1 − q)n + qn] + O(ε2). (108)

9 Summary

In this paper we studied the entropy and the moment-generating function of Hidden Markov
Processes (HMP). The fact that these processes model non-Markov memory is at the origin
of their numerous applications, and, simultaneously, the main reason of difficulties in char-
acterizing their entropy and the moment-generating function. Recall that the entropy gives
the number of sequences in the typical set of the random process [7, 9]; the typical set is the
smallest set of realizations with the overall probability close to one. Alternatively, the en-
tropy is the uncertainty [per time-unit] of the process given its long history. The generating
function allows to estimate the [small] probability of atypical sequences via the Chernoff
bound and the rate functions [7, 9]. The entropy of HMP was studied via upper and lower
bounds [7, 11], expansions over small parameters [16–18], and via expressing the entropy
as a solution of an integral equation [8, 9, 11–15].
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Here we proposed to calculate the entropy and the moment-generating function of HMP
via the cycle expansion of the zeta-function, a method adopted from the theory of dynam-
ical systems [26, 27, 29, 31]. I show that this method has two basic advantages. First, it
produces exact results, both for the entropy and the moment-generating function, for a class
of HMP. We did not so far got into any systematic way of searching for the exact solutions
within this method. The examples of exact solutions presented in Sect. 7.5 were obtained
in the most straightforward way. Second, even if no exact solution is found, the method of-
fers an expansion for the entropy and the moment-generating function via an exponentially
convergent power series [26, 27, 29, 31]. Cutting off these expansions at some finite order
gives normally an improvable approximation for the sought quantities, especially since there
are qualitative estimates for the convergence radius of the series. This was demonstrated in
Sect. 8.

As a by-product of this study, we conjectured in Sect. 7.3 on tentative conditions under
which HMP reduces to a finite-order Markov process. These conditions compare favorably
with those existing in literature, see e.g. [35], and they deserve further exploration. We
also conjectured relations (92–94) between the rate functions of the random process and
its entropy.

Acknowledgements I thank David Saakian for arousing my interest in this problem. The work was sup-
ported by Volkswagenstiftung grant “Quantum Thermodynamics: Energy and information flow at nanoscale”.

Appendix 1: Recollection of Some Facts about the Eigen-Representation Versus
Singular Value Decomposition

A matrix A can be diagonalized if [19]

A = V DV −1, (109)

where D is a diagonal matrix, and where V is an arbitrary invertible matrix. Writing the
eigen-resolution of D, D = ∑

k αk|αk〉〈αk|, where 〈αk|αn〉 = δkn, one gets

A =
∑

k

αk|Rk〉〈Lk|, (110)

where αk are the eigenvalues of A (i.e., the solutions of det (A − α 1) = 0), and where |Rk〉
and |Lk〉 are, respectively, the right and left eigenvectors:

A|Rk〉 = αk|Rk〉, 〈Lk|A = αk〈Lk|, 〈Lk|Rn〉 = δkn. (111)

Note that in general 〈Lk|Ln〉 �= δkn. The right and left eigenvectors coincide for normal
matrices [A,A†] = 0 (A commutes with its complex conjugate). For those matrices V is
unitary.

Not every matrix can be diagonalized, a necessary and sufficient condition for this is that
for each eigenvalue the algebraic degeneracy (i.e., degeneracy of this eigenvalue as the root
of the characteristic polynomial) coincides with the geometric degeneracy (the number of
eigenvectors corresponding to this eigenvalue; geometric degeneracy cannot be larger than
the algebraic one). Thus a sufficient condition for a matrix to be diagonalizable is that its
eigenvalues are not degenerate. Here is a more general sufficient condition: Any matrix that
commutes with a matrix with non-degenerate eigenvalues, is diagonalizable [19].
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If for one eigenvalue α of A the algebraic and geometric degeneracies are equal (say to
m), then

A = V

(
αIm×m 0

0 A′

)
V −1, (112)

where Im×m is the m × m unit matrix.
An alternative representation for the matrix A is given by the singular value decomposi-

tion. Note that if detA �= 0, the matrix A[A†A]−1/2 is unitary. Then it holds

A = U [A†A]1/2, (113)

where U is unitary. Equation (113) holds also for detA = 0 via the continuity. Going to
the eigen-resolution of the hermitian matrix A†A, we see that for any matrix A there is a
singular value decomposition:

A =
∑

k

σk|uk〉〈vk|, (114)

A|vk〉 = σk|uk〉, 〈vk|vn〉 = δkn (115)

〈uk|A = σk〈vk|, 〈uk|un〉 = δkn, (116)

where σk (singular values of A) is the common eigenvalue spectrum of
√

AA† and
√

A†A.
For a given diagonalizable matrix A, its singular value decomposition is related to the

eigen-resolution via [19]

〈vn|Rk〉σn = αk〈un|Rk〉, (117)

〈un|Lk〉σn = α∗
k 〈vn|Lk〉. (118)

The matrix A is normal if and only if |αk| = σk . (I did not find any standard reference on
the fact that |αk| = σk leads to normality; the proof I got myself is too tedious to be presented
here.)

Singular values and eigenvalues are related via the Weyl inequalities. For a given matrix
A, order the absolute values of its eigenvalues as l0 ≥ l1 ≥ · · · ≥ ln, and order its singular
values as σ0 ≥ σ1 ≥ · · · ≥ σn. The Weyl inequalities then read:

m∏

k=0

σk ≥
m∏

k=0

lk,

m∏

k=0

σn−k ≤
m∏

k=0

ln−k, (119)

m∑

k=0

σ
ρ

i ≥
m∑

k=0

l
ρ

i , ρ > 0. (120)

For n = m, (119) leads to equality:
∏n

k=0 σk = ∏n

k=0 lk .

Appendix 2: Additional Features of the Entropy

Recall the definitions (17) and (16) of the entropy h and the block entropy H(N) =
H(XN, . . . , X1), respectively, for the stationary process X . Define:

h(N) = H(N) − H(N − 1) = H(XN |XN−1, . . . , X1). (121)
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h(N) [sometimes called innovation entropy] is the uncertainty of XN given its history
XN−1, . . . , X1. It is clear that once limN→∞ H(N)

N
exists, h(N) converges to the source en-

tropy for N → ∞. One can show that [7]

H(N)

N
≥ h(N) ≥ h(N + 1) ≥ h. (122)

To derive the second inequality in (122) note that the stationarity and the entropy reduction
due to conditioning imply

h(N) = H(XN |XN−1, . . . , X1) = H(XN+1|XN, . . . , X2)

≥ H(XN+1|XN, . . . , X1) = h(N + 1). (123)

The first inequality in (122) is shown as follows.

H(N)

N
= 1

N
H(X1) + 1

N

N∑

i=2

H(Xi |Xi−1, . . . , X1) ≥ 1

N

N∑

i=1

H(XN |XN−1, . . . , X1) = h(N),

(124)
where the first equality is the obvious chain rule for the conditional information, while
the second inequality in (124) follows from the stationarity H(X1) = H(XN), and then
from the same reasoning as in (123). The last inequality in (122) is now obvious.

The meaning of H(N)

N
≥ h ≡ limN→∞ H(N)

N
is that taking into account all the correlations

decreases the entropy. In a related context, h(N) ≥ h(N − 1) means that the innovations
decrease under accumulation of experience. This inequality can be employed for putting an
upper bound for H(N + 1) in terms of H(N) and H(N − 1):

2H(N) − H(N − 1) ≥ H(N + 1) ≥ H(N). (125)

Note also that H(N + 1) = H(N) + h(N + 1) ≤ H(N) + H(N+1)

N+1 leads to

H(N + 1)

N + 1
≤ H(N)

N
, (126)

i.e., the uncertainty per step decreases when increasing N .

Appendix 3: Ergodic Features of the Singular Values for a Random Matrix Product

Let us recall some important features of the Lyapunov exponents of the random matrix
product (8). Employ the known relation between the singular values of AB versus those of
A and B [19]

m∏

k=0

σk[AB] ≤
m∏

k=0

σk[A]σk[B], (127)

where 0 ≤ m ≤ L − 1, and where the ordering (15) is assumed: σ0[A] ≥ σ1[A] ≥ · · ·.
Now recall definitions (9, 10). Applying (127) with m = 0 to T(xN...1) we get (M < N )

lnσ0[T(xN...1)] ≤ lnσ0[T(xM−1...1)] + lnσ0[T(xN...M)]. (128)
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Thus, lnσ0[T(xN...1)] is sub-additive. Together with the assumptions (i), (ii) and (iii) of
Sect. 4.1, (128) ensures the applicability of the sub-additive ergodic theorem [20, 21]. This
leads (for N → ∞) to the probability-one convergence (24):

− 1

N
lnσk[T(xN...1)] → μk, (129)

for k = 0. Applying in the same way (127) with m = 1 to T(xN...1), we use the sub-additivity
for ln(σ0[T(xN...1)]σ1[T(xN...1)]), deduce (24) for k = 1, and so on. It is clear that we could
not employ the sub-additivity directly for lk[T(xN...1)] (modules of the eigenvalues), since
they in general do not satisfy to anything like (127).

The sub-additive ergodic theorem is related to the additive (Birkhoff-Khinchin) ergodic
theorem that claims the existence (with probability one) of a similar limit for a function
1
N

∑N

k=1 f [Xk] of the stationary random process X = {X1, . . . , XN, . . .} [21].

Appendix 4: Eigenvalues and Singular Values of the Random Matrix Product

Recall Sect. 4.2 and the main question posed there: when the modules of the eigenvalues of
the matrix product T(xN...1) are equal, for N � 1, to the singular values of T(xN...1).

As shown by (25), for N � 1 we can keep the dependence on N only in the singular
values of T. (We simplified notations as T(xN...1) = T.) First assume that T is a 2 × 2
matrix. Write the singular value decomposition (113) for T as

T =
(

e−Nμ0 0
0 e−Nμ1

)
U, U =

(
a b

c d

)
, (130)

where e−Nμ0 and e−Nμ1 [with μ0 < μ1] are the singular values of T, and where the matrix U

can be taken real, since T is real. Thus U is orthogonal: ab+ cd = 0, a2 + c2 = b2 +d2 = 1,
ad − bc = ±1.

For the modules of the eigenvalues of T in (130) one finds

l0 = |a|e−Nμ0 + |bc|
|a| e−N(μ1−μ0)+· · · , l1 = 1

|a|e
−Nμ1 − 2|bc|

|a|3 e−N(2μ1−μ0)+· · · . (131)

If |a| �= 0, the singular values of T coincide with the absolute values of its eigenvalues for
N � 1 [24]: the terms O(e−N(μ1−μ0)) and O(e−N(2μ1−μ0)) are negligible and ln |a| is also
neglected inside of the exponents as compared to Nμ0 and Nμ1.

This conclusion changes for a = 0 (and thus d = 0 since U is orthogonal). Now the
modules of the eigenvalues coincide with each other and are equal to e−N(μ1+μ2)/2 which is
different from the singular values.

The next example is 3 × 3 matrix T with the determinant equal to zero:

T =
⎛

⎝
e−Nμ0 0 0

0 e−Nμ1 0
0 0 0

⎞

⎠U, U =
⎛

⎝
a b e

c d f

x y z

⎞

⎠ , (132)

where e−Nμ0 and e−Nμ1 [with μ0 < μ1] are two non-zero singular values of T, and where
the matrix U is orthogonal. Note that provided the third Lyapunov exponent μ2 is larger
than μ1 (and provided we do not use the orthogonality features of the matrix U in (132)),
the considered example is sufficiently general.
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Since det T = 0, the third singular value of T is zero. The third eigenvalue of T(xN...1) is
also equal to zero, while for the absolute values of the remaining eigenvalues we have from
(132)

l0 = |a|e−Nμ0 + O
(

1

|a| e−N(μ1−μ0)

)
, l1 = |ad − bc|

|a| e−Nμ1 + O(e−N(2μ1−μ0)). (133)

If |ad − bc| �= 0, the singular values e−Nμ0 and e−Nμ1 coincide [for N � 1] with the mod-
ules of the eigenvalues. For |ad − bc| = 0 the second eigenvalue of T is equal to zero,
while the second singular value is non-zero. However, the first Lyapunov exponent is still
equal to the spectral radius (module of the first eigenvalue) if a �= 0. The latter two quan-
tities are not equal for a = 0. Now the modules of both eigenvalues of T(xN...1) reduce to√|bc| e−N(μ1+μ2)/2.

Using the examples (130, 132) we got a sufficient condition for deciding whether the
maximal singular value of T is equal to the module of the corresponding eigenvalue. It is
that the absolute values of the two leading eigenvalues of T are different.

Appendix 5: Zeta-Function and Periodic Orbit Expansion

5.1 Structure of Periodic Orbits

Define formally

Zm =
M∑

i1,...,im=1

φ[Ai1 . . .Aim ], (134)

where A1, . . . ,AM are matrices, and where φ[.] is a function that turn its matrix argument
to a number. We assume that the following features hold for φ (d is a positive integer):

φ[Ad ] = φd [A], φ[AB] = φ[BA]. (135)

Using these features one can prove for Zm the following formula [28]:

Zm =
∑

n|m

∑

(γ1,...,γn)∈Per(n)

n
[
φ[Aγ1 . . .Aγn ]

]m
n , (136)

where
∑

n|m means that the summation goes over all n that divide m, e.g., n = 1,2,4 for
m = 4. Here Per(n) contains sequences

� = (γ1, . . . , γn) (137)

selected according to the following rules: (i) � turns to itself after n successive cyclic per-
mutations, but does not turn to itself after any smaller (than n) number of successive cyclic
permutations; (ii) if � is in Per(n), then Per(n) contains none of those n − 1 sequences
obtained from � under n − 1 successive cyclic permutations.

Assume that M = 2, which means that the matrices Ai can take two values A1 = 1 and
A2 = 2. With examples of Per(n) given in Table 4, the proof of (136) is straightforward.
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Table 4 The elements of Per(p)

for p = 1, . . . ,5 and M = 2. As
compared to (9) we denoted
T (x1) = 1 and T (x2) = 2. It is
seen that Per(1) contains two
elements, since the cyclic
permutation is trivial. Per(2)

contains a single element 12,
since 11 and 22 remain invariant
under a single cyclic
permutation, while BA is
obtained from AB via a single
cyclic permutation. Besides the
obvious sequences 1111 and
2222, Per(4) does not include the
sequences 1212 and 2121 which
stay invariant after two
successive cyclic permutations.
In Per(5) we first meet different
elements that have the same
overall number of 1’s and 2’s,
e.g., 12121 and 11122

p Per(p)

1 1, 2

2 12

3 122, 211

4 1222, 2111, 1122

5 12222, 21111, 11222,

22111, 12121, 21212

6 122222, 112222, 111222,

111122, 111112,

112212, 221121

111212, 222121

5.2 The Inverse Zeta-Function and Derivation of (44)

The inverse zeta function is defined as ξ(z) = exp[−∑∞
m=1

zm

m
Zm], where Zm is given by

(134). Employing (136) and introducing notations p = n, q = m
n

, we transform ξ(z) as

ξ(z) = exp

[
−

∞∑

p=1

∑

�∈Per(p)

∞∑

q=1

zpq

q
(φ[Aγ1 . . .Aγp ])q

]
. (138)

the summation over q in (138) is taken as

∞∑

q=1

zpq

q
(φ[Aγ1 . . .Aγp ])q = − ln[1 − zpφ[Aγ1 . . .Aγp ]]. (139)

We shall then finally get [26–28]:

ξ(z) =
∞∏

p=1

∏

�∈Per(p)

[1 − zpφ[Aγ1 . . .Aγp ]]. (140)

5.3 How to Generate the Elements of Per(p) via Mathematica 5

The elements of Per(p) presented in Tables 4 and 5 were generated by hands. For larger p

it is more convenient to generate these elements via Mathematica 5. Below we assume that
the reader knows Mathematica at some average level. First one should run the package of
combinatoric functions:

«DiscreteMath‘Combinatorica‘ (141)
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Table 5 The elements of Per(p)

for p = 1, . . . ,4 and M = 3 p Per(p)

1 1,2,3

2 12, 13, 23

3 122, 211, 233

322, 133, 311

123, 132

4 1222, 2111, 1122,

2333, 3222, 2233

1333, 3111, 1133

1123, 1132, 1213

2213, 2231, 2321

3312, 3321, 3231

Next one defines the function ListNecklaces2[c_List,n_Integer?
Positive],12 the first argument of which is a list, e.g., { A,B }, while the second
argument is a positive integer.

AllCombinations[x_List, n_Integer?NonNegative]

:= Flatten[Outer[List, Sequence Table[x, {n}]], n - 1];

ListNecklaces2[c_List, n_Integer?Positive] := Module[{},

Return[OrbitRepresentatives[CyclicGroup[n],

AllCombinations[c, n]]]];

(142)

The definition of ListNecklaces2 proceeds via an auxiliary function
AllCombinations. All other functions in (142) are contained in the package (141).

Upon running ListNecklaces2[c, p] one gets the elements of Per(p) together
with those sequences (γ1, . . . , γp) that remain invariant under p̄ successive cyclic permu-
tation, where p/p̄ is an integer. For our purposes we meed only the sequences which are
invariant with respect to p cyclic permutation, and are not variant with respect to cyclic
permutations with any smaller p̄. So our next task is to get rid of those parasitic sequences,
which stay invariant with respect to p̄ cyclic permutations with p̄ < p. To this end we de-
signed a straightforward Mathematica program that by the direct enumeration detects and
eliminates the parasitic sequences [obviously, nothing special has to be done for simple num-
bers like p = 3,5,7,11,13]. The drawback of this program is that for each p in Per(p) one
has to adjust the details of this program. Anyhow, we were not able to enforce Mathematica
5 to generate the elements of Per(p) directly.

Here is an example of the above scheme: ListNecklaces2[{A,B}, 3] generates
a list of lists:

{ { A,A,A }, { A,A,B}, { A,B,B}, { B,B,B} }. (143)

12I learned about the function ListNecklaces2 from the e-mail exchange presented in
http://forums.wolfram.com/student-support/topics/6401.

http://forums.wolfram.com/student-support/topics/6401
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After elimination of the parasitic sequences this results in

Y= { { A,A,B}, { A,B,B} }, (144)

where we introduced a shorthand Y. Now employing the construction

Apply[Times, Map[ f[#] &, Apply[Dot, Y, 1] ] ] , (145)

where f is an arbitrary function, one gets

f[A.A.B] f[A.B.B]. (146)

The construction (145) is useful when recovering the formulas for φk for large values of p.
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